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ABSTRACT
In this work we proposed two semi-analytic methods to generate minimum and
near-minimum time velocity profiles for a vehicle along a specified path. Initially we
adopt a point mass parametrization of the vehicle with specified acceleration limits.
In generating the optimal velocity profile, several undesirable cases, where loss of
controllability occurs, and which have been neglected in the literature, are dealt
with in this work. A receding horizon implementation is also proposed for the on-line
implementation of the velocity optimizer. Robustness of the receding horizon algorithm
is guaranteed by the use of an adaptive scheme that determines the planning and
execution horizons. Application to a Formula 1 (F1) circuit with a comparison between
the infinite and finite receding horizon schemes provides a validation of the proposed
methodology. We also provide extensions from the point mass  to a half-car model to
recover the missing attitude (yaw) information. The acceleration limits (GG-diagram)
of the half-car model is determined by the available tire friction forces in the front
and rear axles. We present three extensions of the point mass methodology to the
half-car model. In the first extension we directly implement the optimal control
strategy of the point mass case to the half-car model. In the second extension the
optimal control strategy of the point mass case is interrupted by a stabilizing
control logic when the vehicle slip angle increases beyond a certain value and the yaw
dynamics tend to instability. Finally, in the third approach we enforce the additional
constraint that the vehicle tracks the path with zero slip angle and determine the
acceptable acceleration limits subject to the new constraint.
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1 Abstract

Semi-analytic methods to generate minimum and near-minimum time velocity profiles for a vehicle
along a specified path are presented in this report.

Initially we adopt a point mass parametrization of the vehicle with specified acceleration limits.
In generating the optimal velocity profile, several undesirable cases, where loss of controllability
occurs, and which have been neglected in the literature, are dealt with in this work. A receding
horizon implementation is also proposed for the on-line implementation of the velocity optimizer.
Robustness of the receding horizon algorithm is guaranteed by the use of an adaptive scheme that
determines the planning and execution horizons. Application to a Formula 1 (F1) circuit with a
comparison between the infinite and finite receding horizon schemes provides a validation of the
proposed methodology.

Extensions of the point mass methodology to a half-car model are presented next in order to
recover the missing attitude (yaw) information. The acceleration limits (GG-diagram) of the half-
car model is determined by the available tire friction forces in the front and rear axles. We present
three extensions of the point mass methodology to the half-car model. In the first extension we
directly implement the optimal control strategy of the point mass case to the half-car model. In the
second extension the optimal control strategy of the point mass case is interrupted by a stabilizing
control logic when the vehicle slip angle increases beyond a certain value and the yaw dynamics tend
to instability. Finally, in the third approach we enforce the additional constraint that the vehicle
tracks the path with zero slip angle and determine the acceptable acceleration limits subject to the
new constraint.
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2 Statement of the Problem

Achieving autonomous operation in open terrain remains a challenging problem in the development
of land vehicles. This is due to the uncertainty of the environment the vehicle operates in, as well as
due to the poor characterization of the complex vehicle dynamics and their integration with sensors
and actuators. A solution to this problem requires not only sophisticated hardware components (for
actuation, sensing, and communication), but also advanced software algorithms and supervisory
control strategies that can make use of the full capability of these components.

A class of vehicles we envision to be completely automated in the future are ground wheeled
vehicles (Fig. 1(a)) that operate in hostile off-road environments (e.g., battlefields). A typical
mission would be to drive the vehicle from point A to point B, avoid any obstacles, while minimizing
the exposure to danger; see Fig. 1(b). In general, minimization of the exposure to danger involves
driving through a trajectory in minimum time or maximum average velocity.

(a)

A

B

(b)

Figure 1: (a) autonomous military off-road vehicles will exhibit a high degree of tactical mobility, while
eliminating the risk of loss of human lives; (b) a typical mission scenario will involve an autonomous vehicle
entering a hazardous area to perform its mission objective, while avoiding obstacles and/or minimizing its
exposure to enemy threats and countermeasures.

The objective of this research project is to built on our previous experience on the analysis
of the dynamics and the optimal control of high-speed wheeled vehicles in order to develop new,
advanced control methodologies for the on-line control of autonomous land vehicles that mimic
the way expert humans drive. The focus of this work will be in autonomous path generation,
navigation and tracking for unmanned wheeled terrestrial vehicles operating in high-speed. The
emphasis on high-speed operation stems from the need to minimize reaction time and exposure to
external threats. Specifically, the following problems will be addressed during this project:

2.1 Challenges

The problem of trajectory planning for high-speed autonomous vehicles is typically dealt with in
the literature by means of numerical optimization. Several published results have addressed path

5



planning of high-speed ground vehicles [1, 2, 3, 4]. These results demonstrate that numerical tech-
niques allow one to incorporate accurate, high order dynamical models in the optimization process,
thus producing realistic results. In fact, the optimal solutions generated using these optimizers are
comparable to experimental results obtained from expert race drivers [2, 3, 4]. On the other hand,
these numerical optimization approaches are computationally intensive, and they cannot be readily
applied in cases where the environment changes unpredictably. As a result, they are not suitable
for real-time path-planning optimization.

In the work of Spenko [5] real-time trajectory planning for hazard avoidance of high-speed
Unmanned Ground Vehicles (UGV’s) in rough terrain has been addressed. A fairly rich vehicle
model has been used to predict and avoid roll-over and excessive side-slip. The computational
cost is mitigated somewhat by choosing the hazard avoidance maneuver from a library of off-line
pre-computed candidates.

2.2 Approach

An alternative approach for on-line trajectory optimization of ground vehicles is proposed in this
work. Having in mind the requirement for reduction of the computational cost, we are motivated to
explore the possibility of solving the trajectory planning problem (or at least part of this problem)
analytically or semi-analytically. We separate the geometric problem of designing the optimal path
from the dynamic problem of optimally following this path given the vehicle dynamic characteristics.
Specifically, we assume that the geometric characteristics of the reference trajectory are provided
a priori. This means that the path to be followed will be the result of another optimization
step, which will typically incorporate additional constraints, such as minimum distance traveled,
minimum average curvature, or a combination of the two. Since the dynamics of the vehicle are
not directly included in this optimization step, we expect a reduced computational cost. This
separation of the geometric from the dynamic problem has also been proposed in [6, 7] and [8]. The
path in these references is designed using geometric principles and an “intuitively optimal” velocity
profile is generated using a semi-analytical approach, by taking into consideration the maximum
acceleration available to the vehicle at each point on the path. Notice that in [6, 7, 8] the yaw
dynamics of the vehicle are neglected. A similar problem to the one investigated in this paper has
been addressed in [9], [10] and [11]. Therein the authors investigated the minimum time solution
for a robotic manipulator moving its tip along a prescribed path, while taking into consideration
the actuator limits. In order for all actuators to maintain enough control authority for the tip to
track the desired path exactly, a state constraint is introduced which defines a set of admissible
velocities. The proposed solution consists only of bang-bang control intervals, and the velocity
profile may coincide with the allowable limit only instantaneously. Proof of optimality is provided
by point-wise maximization of the velocity. The extension from point-mass to a half-car model
(that includes rotation of the vehicle about its vertical axis) creates new problems. Specifically,
direct implementation of the optimal strategy from the point-mass model may lead to unstable
oversteer in tight corners. We propose a stabilizing strategy to remedy the instability without
sacrificing performance, in terms of speed.
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3 Summary of Results

3.1 Introduction

In this work we first concentrate on providing a rigorous proof of optimality of the approach in
[6, 7, 8] for a point mass consideration of the vehicle (neglecting the yaw dynamics) using optimal
control theory. We also account for the loss of controllability due to limited accelerating/braking
and cornering forces. The set of admissible velocities is explicitly expressed in terms of the accel-
eration capacity of the vehicle and the curvature of the path to be followed. We present a solution
that allows the velocity to stay within the allowable limit using alternative control strategies, in
conjunction to bang-bang intervals, as necessary. In addition, a constructive proof of optimality for
several special cases of paths to be followed is provided. The necessary optimality conditions are
explicitly derived, which allow us to draw conclusions on the number and type of control switchings.
In particular, the switching points are found semi-analytically instead of numerically (as it was done
in [9], [10], [11]). Application to an F1 circuit provides a validation of the proposed methodology.

In order for a trajectory optimization scheme to be suitable for on-line implementation, it must
be able to adapt to changing environments, in addition to having a reduced computational cost. In
[12, 13, 14] real-time trajectory planning for autonomous (aerial) vehicles using a receding horizon
scheme was proposed. In a receding horizon scheme the optimization is not performed throughout
the whole trajectory, but it is rather computed from the current position up to a pre-specified hori-
zon. The vehicle executes part of the computed optimal trajectory, while simultaneously optimizing
the path up to a new horizon. The search space at each optimization step is considerably reduced,
which results in reduced computational cost. In addition, the receding horizon implementation
accounts for changes in the environment outside the optimization horizon for each step.

We propose a receding horizon implementation of the previous semi-analytical optimal velocity
profile algorithm. The algorithm ensures that at the end of each executed subarc the vehicle can
reach a “safe state” (for example, complete stop) regardless of the (a priori unknown) changes in
the environment outside the planning horizon. This is achieved by designing a dynamic scheme that
determines appropriate planning and execution horizons. Finally, we apply the receding horizon
optimization scheme to an F1 circuit to validate our approach.

Afterwards the point mass methodology for minimum time velocity profiles is extended to a
vehicle model including the yaw dynamics. A half-car model with nonlinear tire friction character-
istics is introduced and the acceleration envelope (GG-diagram) of the vehicle is calculated for any
operating condition. The maximum available acceleration and maximum available deceleration is
determined within the GG-diagram and a direct extension of the optimal control strategy of the
point mass case is proposed using the dynamics of the half-car model. Numerical simulations reveal
that the stability of the yaw dynamics needs to be taken into consideration.

Stability of the yaw dynamics of passenger vehicles has been a subject of intense research in the
automotive community and has led to the development of commercial active safety systems such
as the Electronic Stability Program (ESP). The ESP uses individual wheel braking to generate
stabilizing yaw moments in critical cases where the vehicle operates close to an estimated stability
margin. In [15] this stability margin is characterized by the vehicle slip angle β. In [16] the stability
margin is determined empirically in the β–β̇ plane and its dependence on the velocity of the vehicle
is demonstrated.

We present two approaches for a stable implementation of the control strategy for the point mass
case to a half-car model. In the first approach we design stabilizing control schemes that intervene
during execution of the optimal maximum acceleration/maximum deceleration action when the
vehicle slip angle increases and the yaw dynamics tend to instability. In the second approach we
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redefine the maximum acceleration limits of the vehicle subject to the additional constraint of zero
vehicle slip angle throughout the path.

3.2 The Point Mass Vehicle Case

3.2.1 Problem Formulation

Consider a vehicle of mass m travelling along a prescribed path, with given acceleration limits
and fixed initial and final position and velocity. We seek the velocity profile along the path for
minimum travel time. The path is described by its radius r(s) at each point, which is given as
a function of the path length coordinate s, or equivalently by the curvature k(s) along the path
(Fig. 2). The cartesian coordinates at any point on the path can be calculated using the following
standard transformation

A

B

s

r(s)

m

fmax
t

fmax
n

Figure 2: A vehicle of mass m travels along the prescribed path r(s) with given maximum acceler-
ation limits in minimum time.

k(s) � 1
r(s)

, φ(s) �
∫ s

s0

k(σ)dσ,

x(s) =
∫ s

s0

cosφ(σ)dσ, y(s) =
∫ s

s0

sinφ(σ)dσ. (1)

The equations of motion are given by

m
d2s

dt2
= ft, m

(
ds
dt

)2

= fnr(s), (2)

where, ft is the tangential component of the force along the path, and fn is the normal (centripetal)
force such that the vehicle tracks the prescribed path. The force acting on the vehicle is limited
within the ellipse (

ft

fmax
t

)2

+
(

fn

fmax
n

)2

− 1 ≤ 0. (3)

This is shown in Fig. 2, where fmax
t is the maximum longitudinal force and fmax

n is the maximum
lateral force. We assume that the initial and final vehicle velocities are given, and satisfy

ds
dt

∣∣∣∣
t=t0

<
fmax

n r(s0)
m

,
ds
dt

∣∣∣∣
t=tf

≤ fmax
n r(sf )
m

, (4)
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in order for the initial and final cornering forces to be less than the allowable limit fmax
n and also

in order for some accelerating/braking force ft to be available at t0. Moreover, it will be assumed
that the velocity of the vehicle is always greater than or equal to zero, that is, ds/dt ≥ 0 for all
t ∈ [t0, tf ]. Specifically, the vehicle is not allowed to reverse direction, a natural assumption for a
minimum-time problem.

From now on, and unless stated otherwise, we assume uniform acceleration limits fmax
t = fmax

n =
Fmax, i.e., the total force lies within a circle of radius Fmax.

Consider the following state assignment and change of time scale:

τ � βt, z1 � αβs, z2 � α
ds
dt
, (5)

with α �
√
m/Fmax and β � αFmax/m. The state-space representation of the system may then be

written as

ż1 = z2, (6)

ż2 =
ft

Fmax
, (7)

where ˙( ) denotes derivative with respect to τ . The control input in this formulation is ft, and the
maximum overall acceleration limit Fmax/m translates to a state-dependent control constraint as
follows (

ft

Fmax

)2

+
(

z2
2

R(z1)

)2

− 1 ≤ 0, (8)

where R(z1) � r(z1/(αβ)).
The control constraint (8) can be written as

ft

Fmax
= u

√
1 − z4

2

R2(z1)
, u ∈ [−1,+1]. (9)

In terms of the new control variable u the dynamics of the system is written as

ż1 = z2, ż2 = u

√
1 − z4

2

R2(z1)
, u ∈ [−1,+1]. (10)

In terms of the original variables, the equation of motion, using the elliptic force envelope constraint
(3) can be written as

m
d2s

dt2
= u

√
(fmax

t )2 − m

r(s)

(
fmax

t

fmax
n

)2(ds
dt

)2

, (11)

where u ∈ [−1,+1].
Note that the dynamics (10) are well defined only for trajectories inside the region S ⊂ R

2 of
the state space defined by

S � {(z1, z2) : C0(z1, z2) � z2
2 − |R(z1)| ≤ 0}. (12)

In addition, controllability is maintained only at the interior of the set S. At the boundary of the
set S controllability is lost. The following lemma states that unless we have a path of constant
curvature, the state constraint C0(z1, z2) ≤ 0 is always inactive for any finite interval of time,
hence controllability is maintained for any path of nonzero curvature. In the following, R′(z1) =
∂R(z1)/∂z1.
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Lemma 1 Assume R′(z1) �= 0 for any z1 ∈ (zα, zβ) ⊂ [z10, z1f ], where z10 = z1(τ0) and z1f =
z1(τf ). Then the manifold ∂S = {(z1, z2) : C0(z1, z2) = 0} is not invariant for the system (10) for
any control u.

Proof: Invariance of ∂S with respect to (10) implies that

−ż1R′(z1) sgnR(z1) + 2z2ż2 = 0, (13)

equivalently,
−z2R′(z1) sgnR(z1) = 0, (14)

since ż2 = 0 on ∂S for any u ∈ [−1,+1]. Since z2 > 0 for all z1 ∈ (z10, z1f ), the last equation is
satisfied if and only if R′(z1) = 0.

An immediate consequence of Lemma 1 is the fact that ∂S is invariant under (10) only for paths
of constant curvature.

Note that the flow of the trajectories of (10) in the vicinity of the constraint C0(z1, z2) = 0 are
given by

dC0(z1, z2)
dt

=
∂C0

∂z1
ż1 +

∂C0

∂z2
ż2

= −ż1R′(z1) sgnR(z1) + 2z2ż2
= −z2R′(z1) sgnR(z1).

It follows that
dC0(z1, z2)

dt
< 0, if R′(z1) sgnR(z1) > 0 (15)

and
dC0(z1, z2)

dt
> 0, if R′(z1) sgnR(z1) < 0. (16)

The following corollary is therefore immediate.

Corollary 1 The set S is invariant for the system (10) only for paths of monotonically decreasing
curvature (increasing radius). Such paths are characterized by the inequality R′(z1) sgnR(z1) > 0.

Given a certain path, characterized by its radius R(z1), the velocity z2 for which the constraint
C0(z1, z2) = 0 is satisfied is thus of extreme importance for our problem. We will denote this
velocity by z2crit(z1). It is given by

z2crit(z1) �
√
|R(z1)|. (17)

When z2(z1) = z2crit(z1) for some z1 ∈ [z10, z1f ] loss of controllability ensures. Corollary 1 essen-
tially states that for paths of monotonically decreasing curvature loss of controllability can occur
only instantaneously. This can also be seen from the following simple argument. Assume, for
instance, that at some point τc ∈ (τ0, τf ), z2(τc) = z2crit(z1(τc)). The tangential component of
the acceleration becomes zero and ż2(τc) = 0. Since the vehicle travels on a path of monoton-
ically decreasing curvature (increasing radius), |R(z1(τ+

c ))| > |R(z1(τc))|, while z2(τ+
c ) = z2(τc).

It follows that the square root in the rhs of equation (10) will take a positive, non-zero value at
τ = τ+

c and the system will regain controllability. For a path of monotonically increasing cur-
vature (decreasing radius) on the other hand, the condition z2(τc) = z2crit(z1(τc)) at some point
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τc ∈ (τ0, τf ) leads to ż2(τc) = 0 and z2(τ+
c ) = z2(τc), and since |R(z1(τ+

c ))| < |R(z1(τc))|, it follows
that z2

2(τ
+
c ) ≥ |R(z1(τ+

c ))|. The quantity inside the square root at the right-hand-side of (10) be-
comes negative at τ+

c . The equations are infeasible and a larger centripetal force than the available
one Fmax is needed for the vehicle to negotiate the path. It follows that for a path of monotonically
increasing curvature (characterized by the inequality R′(z1) sgnR(z1) < 0) we cannot allow the
vehicle to reach z2crit(z1). In Section 3.2.5 we discuss this case in great detail and we show that
optimal paths necessarily remain in S.

We know turn to the solution of the minimum time problem for system (10).

3.2.2 Optimal Control Formulation

In reference to the system (10), and given fixed initial conditions z10 = z1, z20 = z2 at τ = τ0 and
final condition z1f = z1, z2f = z2 at τ = τf , we desire the optimal control u that drives the system
(10) from point A to point B of the cartesian plane (Fig. 2) in minimum time τf subject to (12).
We adopt the notation zP

1 and zP
2 for the path length coordinate z1 and velocity z2 of a point P of

the prescribed path R(z1). Thus, we have zA
1 = z10, zA

2 = z20, zB
1 = z1f and zB

2 = z2f . Notice that
without loss of generality we may assume that z2(τ) > 0, ∀ τ ∈ (τ0, τf ).

The cost function to be minimized is written as

J =
∫ τf

τ0

dσ. (18)

The Hamiltonian for this problem is

H(z, λ, u) = 1 + λ1z2 + λ2u

√
1 −

(
z4
2

R2(z1)

)
+ µC0(z1, z2). (19)

The system of adjoint equations is

λ̇1 = −∂H
∂z1

= −λ2u
z4
2√

1 − z4
2/R

2(z1)
R′(z1)
R3(z1)

+ µ sgnR(z1)R′(z1), (20)

λ̇2 = −∂H
∂z2

= −λ1 + 2λ2u
z3
2

R2(z1)
√

1 − z4
2/R

2(z1)
− 2z2µ. (21)

The Kuhn-Tucker conditions imply

µ = 0 for C0(z1, z2) < 0 and µ ≥ 0 for C0(z1, z2) = 0. (22)

The transversality condition implies H(τf ) = 0, and since the Hamiltonian does not depend
explicitly on time it also follows that

H(τ) = 0, ∀ τ ∈ [τ0, τf ]. (23)

Consider first the case of an inactive constraint, C0(z1, z2) < 0. In this case µ = 0 and
Pontryagin’s Maximum Principle leads to the optimal control

u∗ = argminu∈[−1,+1]H(z, λ, u) =
{−1 for λ2 > 0,
+1 for λ2 < 0,

(24)

which implies,

u∗(τ) = − sgnλ2(τ). (25)
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Therefore λ2 is the switching function, which determines the value of u∗.
Let us consider the possibility of a singular control interval in the optimal solution, i.e., the

existence of a time interval (τ1, τ2) ⊂ [τ0, τf ] such that λ2(τ) = 0, for all τ ∈ (τ1, τ2). Equation (20)
implies that λ̇1(τ) = 0 for all τ ∈ (τ1, τ2), or equivalently λ1(τ) = λ10 = constant for all τ ∈ (τ1, τ2).
Equation (21) implies λ̇2(τ) = −λ10τ for all τ ∈ (τ1, τ2). In addition, λ2(τ) = 0 and λ̇2(τ) = 0 for
all τ ∈ (τ1, τ2), and thus we have λ10 = 0 and λ1(τ) = λ2(τ) = 0 for all τ ∈ (τ1, τ2). Equation (19)
then gives H(τ) = 1 for τ ∈ (τ1, τ2), which contradicts the condition (23) that H(τ) = 0 for all
τ ∈ [τ0, τf ].

We have thus proven the following proposition.

Proposition 1 Assuming that throughout the optimal trajectory C0(z1, z2) < 0, there can be no
singular subarc.

This proposition states that to optimally transverse a path in minimum time, the maximum
available force must be used at all times and the optimal trajectory is composed only of bang-bang
subarcs (u = +1 or u = −1), assuming that the optimal state trajectory remains inside S.

3.2.3 Solution for Special Cases of Path Curvature: Inactive Constraint

In the following, we provide solutions to the previous minimum-time problem for several special
cases of R(z1). First, we consider the simplest case when the constraint (12) remains inactive.
According to Lemma 1 this occurs only if R′(z1) �= 0. We distinguish two different cases: paths of
decreasing curvature and paths of increasing curvature.

3.2.4 Path of Decreasing Curvature

Consider a path of monotonically decreasing curvature from point A to point B in the cartesian
plane denoted by

P+
AB =

{
(z1, R(z1)) : R′(z1) sgnR(z1) > 0, z1 ∈ [zA

1 , z
B
1 ]
}
. (26)

From Proposition 1 we know that the optimal path is composed solely of subarcs of maximum
acceleration or maximum deceleration.

Equation (20) with R′(z1) sgnR(z1) > 0 yields λ̇1(τ) ≥ 0, for all τ ∈ [τ0, τf ]. Suppose now that
there exists a switching time τ1 ∈ (τ0, τf ). It follows that λ2(τ1) = 0. The transversality condition
(23) implies λ1(τ1) = −1/z2(τ1). For any τ ∈ [τ0, τ1) we have that

− 1
z2(τ)

≤ −1 + |λ2|
√

1 − z4
2/R

2(z1)
z2(τ)

= λ1(τ)

≤ λ1(τ1) = − 1
z2(τ1)

(27)

since λ1 is non-decreasing. Inequality (27) implies that z2(τ) ≤ z2(τ1) for all τ ∈ [τ0, τ1), from
which we conclude that τ1 is a switching point from u = +1 to u = −1.

Following the same steps as for the switching point τ1, it is easy to prove that any other
switching point τ2 ∈ (τ0, τ1) has to be from u = +1 to u = −1. Obviously, there can be no
consecutive switching points from u = +1 to u = −1 without a switching from u = −1 to u = +1
in between. Thus, we rule out the possibility of existence of a second switching point τ2 ∈ (τ0, τ1).
Finally, suppose that there exists a switching point τ3 ∈ (τ1, τf ). The transversality condition
(23) implies λ1(τ3) = −1/z2(τ3). Since λ1 is non-decreasing we have that λ1(τ1) ≤ λ1(τ3) or that
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−1/z2(τ1) ≤ −1/z2(τ3) and finally that z2(τ1) ≤ z2(τ3), implying that the vehicle accelerates from
τ1 to τ3, which contradicts the fact that u(τ) = −1 for τ ∈ (τ1, τ3). It follows that we can have
only one switching in the control.

Let now Z+
A (z1) be the characteristic constructed by forward integration of (10) from (zA

1 , z
A
2 )

with u = +1, and Z−
B (z1) be the characteristic constructed by backward integration of (10) from

(zB
1 , z

B
2 ) with u = −1. We have therefore the following proposition for the optimal trajectory on

paths of monotonically decreasing curvature.

Proposition 2 In the case of a path of monotonically decreasing curvature P+
AB there can be at

most one switching in the control, from u = +1 to u = −1. In this case the optimal solution is
given by

z∗2(z1) = min
{
Z+

A (z1), Z−
B (z1)

}
. (28)

It is easy to prove the optimality of (28) directly, by showing that z∗2(z1) in (28) maximizes the
velocity pointwise for all z1 ∈ [zA

1 , z
B
1 ].

3.2.5 Path of Increasing Curvature

Consider a path of monotonically increasing curvature from point A to point B denoted in the
cartesian plane by

P−
AB =

{
(z1, R(z1)) : R′(z1) sgnR(z1) < 0, z1 ∈ [zA

1 , z
B
1 ]
}
. (29)

Similar to the case of a path of decreasing curvature, the optimal path is composed only of subarcs
of maximum acceleration or maximum deceleration, assuming that the optimal trajectories remain
in the interior of S (Proposition 1). An analysis similar to the one of Section 3.2.4 can be followed
to show that, assuming the trajectories remain in S, there can be at most one switch in the control,
from u = +1 to u = −1. Below we show that the optimal trajectory does indeed remain in S.

As before, let Z+
A (z1) be the characteristic constructed by forward integration of (10) from

(zA
1 , z

A
2 ) with u = +1, and Z−

B (z1) be the characteristic constructed by backward integration of
(10) from (zB

1 , z
B
2 ) with u = −1.

Lemma 2 Assuming zB
2 ≤ z2crit(zB

1 ), then Z−
B (z1) < z2crit(z1) for all z1 ∈ [zA

1 , z
B
1 ).

Proof: The proof involves two steps. First, we construct the locus M of points in the z1-z2 plane
having the following property: the slope of any trajectory beginning from any point in M ⊂ S using
the control u = −1 is less than or equal to the slope of z2crit(z1). In the second step we show that
for characteristic path starting in S\M constructed by backward integration of (10) with u = −1
remains in S.

To this end, note that the smallest possible slope in the z1-z2 plane of any feasible trajectory is
achieved using maximum deceleration (u = −1). In particular, we have

ż2 = u

√
1 − z4

2

R2(z1)
⇒ z′2 =

u

z2

√
1 − z4

2

R2(z1)
, (30)

which for u = −1 yields

z′2min = − 1
z2

√
1 − z4

2

R2(z1)
. (31)
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On the other hand, the slope of the z2crit(z1) characteristic in (17) is

z′2crit(z1) =
sgnR(z1)R′(z1)

2
√|R(z1)|

� ρ(z1). (32)

Using (31) and (32) we may enforce the inequality z′2min ≤ z′2crit by

P (z2) � z4
2 +R2(z1)ρ2(z1)z2

2 −R2(z1) ≤ 0. (33)

Solving for z2
2 , the roots of P (z2) are

r1,2 � −R2(z1)ρ2 ∓√R(z1)4ρ4 + 4R2(z1)
2

, (34)

and for (33) to hold, given z2 > 0, we must have

z2 ≤ √
r2 =

(
−R2(z1)ρ2(z1) +

√
R4(z1)ρ4(z1) + 4R2(z1)
2

)1/2

. (35)

In the limiting case, when z′2min = z′2crit, we have z2safe =
√
r2. An explicit relationship between

z2safe and z2crit is given by the equation

z4
2safe − z4

2crit +
(
R′(z1)2

4

)
z2
2safez

2
2crit = 0, (36)

which implies that z2safe(z1) < z2crit(z1) for all z1 ∈ [zA
1 , z

B
2 ]. The set M is therefore the area

underneath the curve z2safe(z1). It follows that M ⊂ S. The z2crit(z1) and z2safe(z1) curves for
paths of increasing curvature are shown in Fig. 3.

To finish the proof, notice that for any trajectory starting in S\M (the area between the char-
acteristics z2safe(z1) and z2crit(z1) in Fig. 3) using u = −1, we have that z′2min > z′2crit. Integrating
now backwards in time from zB

1 to z1 (dz1 < 0) using u = −1 one obtains∫ z1

zB
1

dz2min <

∫ z1

zB
1

dz2crit, (37)

or z2min(z1)− z2min(zB
1 ) < z2crit(z1)− z2crit(zB

1 ). Since z2min(zB
1 ) ≤ z2crit(zB

1 ) for points in S\M it
follows that z2min(z1) < z2crit(z1). See also Fig. 4.

We conclude that for an increasing curvature path P−
AB,

Z−
B (z1) < z2crit(z1), z1 ∈ [zA

1 , z
B
1 ), (38)

given that zB
2 ≤ z2crit(zB

1 ).

Lemma 2 implies, in particular, that

z2(z1) = min
{
Z+

A (z1), Z−
B (z1)

}
< z2crit(z1), z1 ∈ [zA

1 , z
B
1 ). (39)

Hence the constraint (12) remains inactive throughout the optimal trajectory. We have therefore
shown the following result for the optimal trajectory on paths of monotonically increasing curvature.

Proposition 3 In the case of a path of monotonically decreasing curvature P−
AB, there can be at

most one switching in the control, from u = +1 to u = −1. In this case the optimal solution is
given by

z∗2(z1) = min
{
Z+

A (z1), Z−
B (z1)

}
. (40)
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Figure 3: In the area between z2crit and z2safe we can integrate backward in time with u = −1
without intersecting z2crit.

3.2.6 Numerical Example

Consider a path of increasing magnitude of the radius (decreasing curvature) from point A to point
B as in Fig. 5(a), described by the following equation

R(z1) = −0.5z1 − 10. (41)

Assume that the vehicle starts from point A with zero velocity and reaches point B with zero
velocity as well. The switching point SP is determined by the intersection of the characteristic
Z+

A (z1) in Fig. 5(b), created by forward integration of the equations of motion (10) with initial
conditions (zA

1 , z
A
2 ) using u = +1, with the characteristic Z−

B (z1), created by backward integration
of the equations of motion with initial conditions (zB

1 , z
B
2 ) using u = −1. Equivalently, the optimal

solution z∗2(z1) is given by

z∗2(z1) = min
{
Z+

A (z1), Z−
B (z1)

}
. (42)

Figure 6 confirms that the optimality conditions hold, i.e. the switching function λ2 changes sign
at the switching point of the control input.

3.2.7 Solution for Special Cases of Path Curvature: Active Constraint

In this section we consider the case when the constraint (12) is active, i.e., C0(z1, z2) = 0. First,
observe that when the speed of the vehicle takes the critical value (17), equation (12) implies that
(z1, z2) ∈ ∂S. In this case fn = Fmax and ż2 = 0 from (10). The control input u cannot affect the
value of the velocity and loss of controllability ensues. This may also be interpreted as a loss of
the ability to generate tangential force ft, since the whole force capacity Fmax is used to produce
the required centripetal force fn. From Lemma 1 it follows that this case is possible only for paths
of constant curvature. In the remaining of this section we will therefore consider only paths with
R′(z1) = 0.
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Figure 4: Optimal solution for a path of decreasing curvature near the state constraint.

In order to avoid the difficulty arising from the loss of controllability for the case of a path of
constant curvature, we introduce the constraint

Cε(z1, z2) � z2
2 + ε− |R(z1)| = 0, (43)

where ε > 0 is a small positive scalar. We investigate optimal paths that satisfy this constraint and
the we take ε→ 0 to recover the case of C0(z1, z2) = 0 at the limit.

An easy calculation shows that the control law that keeps the vehicle on the constraint (43) is
given by

usc =
R(z1)R′(z1)

2
√

2|R(z1)|ε− ε2
, (44)

which, upon R′(z1) = 0 yields usc ≡ 0 for any ε > 0. Hence limε→0 usc = 0.
Consider now a path of constant curvature P0

AF . Figure 7 shows the characteristic Z+
A (z1)

constructed by forward integration of (10) from (zA
1 , z

A
2 ) with u = +1, the characteristic Z0

AF (z1)
given by z2(z1) =

√|R(z1)| − ε < z2crit(z1), for z1 ∈ [zA
1 , z

F
1 ], with ε > 0, and the characteristic

Z−
F (z1) constructed by backward integration of (10) from (zF

1 , z
F
2 ) with u = −1. Notice that the

characteristic Z0
AF (z1) is constructed with u = 0, which coincides with usc in (44) for R′(z1) = 0.

On the characteristic Z0
AF (z1) the constraint (43) remains active, i.e., Cε(z1, Z0

AF (z1)) = 0.

Proposition 4 In the case of a path of constant curvature P0
AF , assuming ε > 0, the optimal

solution is given by

z∗2(z1) = min
{
Z+

A (z1), Z0
AF (z1), Z−

F (z1)
}
. (45)

The trajectory from zA
1 to zB

1 in Fig. 7 maximizes point-wise the velocity since it is constructed
using maximum acceleration u = +1 from a fixed initial velocity z2(τ0) = zA

2 . The velocity of
the trajectory from zB

1 to zE
1 is equal to the maximum allowable value,

√|R(z1)| − ε. Finally, the
trajectory from zE

1 to zF
1 on Z−

F is also of maximum point-wise velocity, since Z−
F is constructed using

maximum acceleration u = −1 backward in time starting from a fixed initial velocity z2(τf ) = zF
2 .

Thus, the overall trajectory of (45) maximizes the velocity point-wise, which proves the optimality
of the proposed solution.
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Figure 5: Optimal velocity profile through a path of increasing radius.

Let now ε → 0 and assume that at some point τc ∈ (τ0, τf ) we have z2(τc) = z2crit(z1(τc)), as
in (17). This point corresponds to (zC

1 , z2crit) in Fig. 7. Since the square root in equation (10)
becomes zero, the tangential acceleration becomes zero and hence ż2(τc) = 0. Since we are on a
path of constant curvature, z2(τ) = z2crit(z1(τ)) for all τ ≥ τc and thus once controllability is lost,
it cannot be regained. This means that when the vehicle operates at (zD

1 , z2crit), it cannot switch
to Z−

B (z1) and the vehicle continues to travel with z2crit. We conclude that in case of a path of
constant curvature P0

AF , unless the final velocity zF
2 = z2crit(zF

1 ) we cannot allow ε = 0. We have
therefore shown the following corollary.

Corollary 2 Consider the minimum-time problem (10), and assume a path of constant curvature,
R(z1) = c. If z2(τf ) �=√|c| an optimal solution does not exist.

In the sequel we investigate paths composed of concatenations of paths investigated thus far.
Such concatenations will allow us to construct the optimal trajectories, along with the corresponding
optimal controls, by piecing together the solutions provided by Propositions 1-4.

3.2.8 Path with minR(z1)

Consider now a path of increasing curvature P−
AC followed by a path of decreasing curvature P+

CB

as in Fig. 8. We adopt the following notation for the path from point A to point B

P∓
ACB = P−

AC ◦ P+
CB =

{
(z1, R(z1)) : R′(z1) sgnR(z1) < 0, z1 ∈ [zA

1 , z
C
1 ),

R′(z1) sgnR(z1) > 0, z1 ∈ [zC
1 , z

B
1 ])
}
, (46)

where “◦” denotes the concatenation operator. The function R(z1) has a minimum at zC
1 (see

Fig. 8).
Let z∗2(z1) denote the minimum time solution from A to B and zC∗

2 denote the velocity at point
C of the z∗2(z1) trajectory. According to Bellman’s Principle of Optimality if the solution A→ B is
optimal then the first part of this solution, A→ C, solves the minimum time problem from A to C
with the final condition z2(τf ) = zC∗

2 . Similarly, the second part, C → B, solves the minimum-time
problem from C to B with initial condition z2(τ0) = zC∗

2 .
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Figure 6: Switching function and control input time history for the path shown in Fig. 5(a).

The velocity zC∗
2 is not known a priori however, and the solution A→ B cannot be constructed

from the solutions A → C and C → B. Nonetheless, we do know the allowable switchings of the
control for the subarcs A→ C and C → B from the analysis in Sections 3.2.4 and 3.2.5.

On the part A → C we have a path of increasing radius, and according to Section 3.2.4 the
possible optimal velocity profiles, summarized in Fig. 9(a), are: u = +1 (Case 1), u = −1 (Case 2)
or u = +1 that switches once to u = −1 (Case 3). Similarly, on the part C → B we have a path of
decreasing radius and according to Section 3.2.5 the possible optimal velocity profiles, summarized
in Fig. 9(b), are: u = +1 (Case a), u = −1 (Case b) or u = +1 that switches once to u = −1
(Case c). For Bellman’s Principle of Optimality to hold, the overall solution from A to B will
consist of the subarcs A → C and C → B that correspond to Cases 1,2,3 and Cases a,b,c (Fig 9),
respectively. Thus, all the possible optimal velocity profiles for the overall problem from A to B
are all the possible combinations of Cases 1,2,3 and Cases a,b,c. These are shown in Fig 10. In the
following, we discuss each case separately in order to compute the optimal velocity at point C.

Case 1a corresponds to u = +1 in both subarcs, A→ C and C → B and the optimal solution
z∗2(z1) coincides with the characteristic Z+

A (z1). Obviously, there is no other path that satisfies the
boundary conditions at points A and B. The velocity at point C has to be less than or equal to
z2crit(zC

1 ). In this case the optimal velocity zC∗
2 is determined by the boundary conditions at A and

B.
Case 1b corresponds to u = +1 from A → C and u = −1 from C → B. Contrary to the

previous case, it is now possible to satisfy the boundary conditions at A and B using acceptable
control switchings. Consider, for example, the solution using the sequence of characteristics Z+

A (u =
+1), Zm (u = −1), Zn (u = +1), Z−

B (u = −1) shown in Fig. 10, Case 1b. However, it is obvious
that the solution using one switching from Z+

A to Z−
B maximizes velocity point-wise between A and

B (for the given boundary conditions), and thus this is the optimal solution. Again, the velocity
at point C has to be less than or equal to z2crit(zC

1 ).
Case 1c corresponds to u = +1 from A → C and switching of the control from u = +1 to
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u = −1 along the subarc C → B. This case is similar to the Case 1b. The overall trajectory
consists of one switching from acceleration to deceleration. However, this time the switching does
not take place at point C due to the different boundary conditions at A and B. Again, the velocity
at point C has to be less than or equal to the critical one.

Case 2a corresponds to u = −1 from A → C and u = +1 from C → B. Assume, as shown in
Case 2a of Fig. 10, that there are other solutions that consist of admissible switchings, and which
satisfy the same boundary conditions at points A and B. In fact, the solution that corresponds to
Case 2a, constructed by the characteristic paths Z−

C and Z+
C , is the one with the lowest velocity

point-wise between A and B. We conclude that Case 2a will be optimal only if zC∗
2 = z2crit(zC

1 ),
which is acceptable since a path of decreasing curvature follows after point C and controllability is
regained immediately.

Case 2b corresponds to u = −1 in both subarcs, A → C and C → B. It is completely
equivalent to Case 1a if we reverse the boundary conditions at the points A and B.

Case 2c corresponds to u = −1 from A→ C and one switching from u = +1 to u = −1 in the
subarc from C → B. As in Case 2a, unless zC∗

2 = z2crit(zC
1 ) there are other solutions that satisfy

the boundary conditions at points A and B consisting of higher velocities at all points between A
and B.

Case 3a corresponds to one switching from u = +1 to u = −1 along the subarc A→ C and to
u = +1 along C → B. This case is equivalent to the Case 2c if we switch the boundary conditions
of points A and B.

Case 3b corresponds to one switching from u = +1 to u = −1 along the subarc A → C and
to u = −1 from C → B. It is equivalent to Cases 1b and 1c; however, in this case the switching of
control occurs before point C.

Case 3c corresponds to one switching from u = +1 to u = −1 along the subarc A → C and
switching from u = +1 to u = −1 along the subarc C → B. Unless zC∗

2 = z2crit(zC
1 ) there are

19



0 2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

x (m)

y 
(m

)

A B 

C 

−10 −5 0 5 10
0

5

10

15

20

25

30

35

40

z
1
 (m)

R
 (

m
)

z
1
A z

1
C z

1
B 

P
AC
− P

CB
+

Figure 8: Path with minimum radius at point C, in cartesian coordinates (left); path radius as a
function of path length (right).

other solutions that satisfy the boundary conditions at points A and B, which all consist of higher
velocity at all points.

From the previous analysis we conclude that there are only two possible scenarios for the value
of zC∗

2 . In Cases 1a, 2a, 3a, 2b and 3b we have zC∗
2 ≤ z2crit(zC

1 ) and z∗2C is determined by satisfying
the boundary conditions of A and B using allowable control switches. In Cases 2a, 2c, 3a and 3c
we have zC∗

2 = z2crit(zC
1 ) and a control switch from u = −1 to u = +1 at C.

Next, we propose a methodology to construct the overall optimal solution for a path with
curvature switching from increasing to decreasing at a point C. Starting from (zA

1 , z
A
2 ) we construct

the characteristic Z+
A (z1) integrating the equations of motion (10) forward in time using u = +1.

Starting from (zB
1 , z

B
2 ) we construct the characteristic Z−

B (z1) integrating the equations of motion
(10) backward in time using u = −1. Starting from (zC

1 , z2crit(z
C
1 )) we construct the characteristic

Z−
C (z1) integrating the equations of motion (10) backward in time using u = −1. Finally, starting

from (zC
1 , z2crit(z

C
1 )) we construct the characteristic Z+

C (z1) integrating the equations of motion
(10) forward in time using u = +1. The optimal velocity profile is then given by

z∗2(z1) = min
{
Z+

A (z1), Z−
C (z1), Z+

C (z1), Z−
B (z1)

}
. (47)

It is easy to show that (47) reproduces all the cases of Fig. 10.

3.2.9 Path with maxR(z1)

Consider now a path of decreasing curvature P+
AC followed by a path of increasing curvature P−

CB.
We adopt the following notation for the path from point A to point B

P±
ACB = P+

AC ◦ P−
CB. (48)

Clearly, in this case the function R(z1) has a maximum at zC
1 . All possible scenarios that may

appear along the subarcs A→ C and C → B according to the solutions presented in Sections 3.2.4
and 3.2.5 may be summarized in accordance to Fig. 9.

In Section 3.2.8 we concluded that Cases 2a, 2c, 3a and 3c may appear as the optimal solutions
only if the velocity at C is zC∗

2 = z2crit(zC
1 ). Since C is a point of maximum radius, the critical
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Figure 9: Possible optimal velocity profiles before (left) and after (right) point C.

velocity at point C is larger compared to any other point from A to B. That is,

z2crit(z1) < z2crit(zC
1 ) for z1 ∈ [zA

1 , z
C
1 ) ∪ (zC

1 , z
B
1 ]. (49)

On the other hand, in Cases 2a, 2c, 3a and 3c the velocity at point C is a local minimum. That is,
there exists δ > 0 such that zC∗

2 < z2(z1) for z1 ∈ (zC
1 − δ, zC

1 + δ). For zC∗
2 = z2crit(zC

1 ) equation
(49) implies that z2(z1) > z2crit(z1), for all z1 ∈ (zC

1 − δ, zC
1 + δ), and the vehicle cannot follow the

prescribed path. We conclude that Cases 2a, 2c, 3a and 3c cannot appear as optimal solutions in
the case of a path with a point C of maximum radius.

The only possible scenarios are Cases 1a, 1b, 1c, 2b and 3b, where the optimal velocity at C is
determined by the initial and final boundary conditions. The optimal solution is finally given by

z∗2(z1) = min
{
Z+

A (z1), Z−
B (z1)

}
. (50)

3.2.10 General Solution

Assume that the given path from point A to point B is composed of a finite number of segments of
constant curvature, of segments of monotonically increasing curvature and segments of monotoni-
cally decreasing curvature. Let the total number of segments be n+ 1. The path from point A to
point B can then be expressed as

PAB = P i1
AP1

◦ P i2
P1P2

◦ P i3
P2P3

◦ · · · ◦ P in+1

PnB , (51)

where ik ∈ {+, −, 0}, k = 1, 2, ..., n+1. Let I∓ denote the set of indices corresponding to points of
minimum radius of the path PAB, that is, I∓ = {j : ij = −, ij+1 = +}, I0 denote the set of indexes
corresponding to the first point of a segment of constant curvature, i.e. I0 = {j : ij = 0, ij−1 �= 0}.

The following algorithm provides an ε-suboptimal velocity profile for minimum time travel along
the path PAB.

21



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

z
1
 (m)

z 2 (
m

/s
ec

)
case 1a 

z
1
A z

1
C z

1
B 

Z
A
+ 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

z
1
 (m)

z 2 (
m

/s
ec

)

case 1b 

z
1
A z

1
C z

1
B 

Z
A
+ Z

B
− 

Z
m

 Z
n

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
A 

Z
A
+ 

Z
B
− 

case 1c 

z
1
C z

1
B 

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
A 

Z
C
− 

Z
C
+ 

Z
k
 

Z
l

Z
m

Z
n
 

case 2a 

z
1
C z

1
B 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
B 

case 2b 

z
1
C z

1
A 

Z
B
− 

−5 −4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
C 

Z
A
+ 

case 2c 

z
1
A z

1
B 

Z
C
− 

Z
C
+ 

Z
B
− 

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
A 

Z
C
− 

case 3a 

z
1
C z

1
B 

Z
A
+ 

Z
B
− 

Z
C
+ 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

z
1
 (m)

z 2 (
m

/s
ec

)

z
1
A 

Z
A
+ 

case 3b 

z
1
C z

1
B 

Z
B
− 

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

z
1
 (m)

z 2 (
m

/s
ec

)

Z
A
+ 

z
1
A 

case 3c 

z
1
C z

1
B 

Z
C
− Z

C
+ Z

B
− 

Z
n
 Z

m
 

Figure 10: All possible optimal velocity profiles from A to B.

ALGORITHM FOR OPTIMAL VELOCITY PROFILE

� From (zA
1 , z

A
2 ) integrate the equations of motion (10) forward in time with u = +1

to construct the characteristic Z+
A (z1).

� From (zB
1 , z

B
2 ) integrate the equations of motion (10) backward in time with u = −1

to construct the characteristic Z−
B (z1).

� For each point of minimum radius Pk, k ∈ I∓, construct the following charac-
teristics: the characteristic Z−

Pk
(z1) by integrating (10) backward in time from

(zPk
1 , z2crit(z

Pk
1 )) using u = −1, and the characteristic Z+

Pk
(z1) by integrating (10)

forward in time from (zPk
1 , z2crit(z

Pk
1 )) using u = +1.

� For each segment P0
P�P�+1

of constant radiusR(z1) = R� where � ∈ I0, construct the
following characteristics: the characteristic Z0

P�P�+1
(z1) of constant velocity equal

to
√|R�| − ε, for some ε > 0, the characteristic Z−

P�
(z1) by integrating backward

in time from (zP�
1 ,
√|R�| − ε) using u = −1, and the characteristic Z+

P�+1
(z1) by

integrating forward in time from (zP�+1

1 ,
√|R�| − ε) using u = +1.

� The solution to the minimum time problem is given by

z∗2(z1) = min
{
Z+

A (z1), Z−
B (z1), Z−

Pk
(z1), Z+

Pk
(z1), Z0

P�P�+1
(z1), Z−

P�
(z1), Z+

P�+1
(z1)

}
,

(52)
where k ∈ I∓ and � ∈ I0.
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The previous algorithm will give the optimal velocity profile in case I0 = ∅. Otherwise, and
in light of Corollary 2, the solution is suboptimal in the sense that it can always be improved by
taking ε→ 0 but not zero. Proof of optimality can be easily provided by showing that this solution
maximizes the velocity pointwise. We demonstrate this fact in the following example.

3.2.11 Example (General Solution)

Consider the path PAB shown in Fig. 11(a). We can identify points of minimum radius at P1, P4

and P9 (I± = {1, 4, 9}), and intervals of constant radius PP5P6 and PP7P8 (I0 = {5, 7}). Figure
11(b) shows the construction of the necessary characteristics using the rules of the previous section.
The minimum time solution is given by (52) and it is shown in Fig. 12(a).
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Figure 11: (a) A general case radius profile path; (b) the free boundary conditions problem solutions
for constant radius and minR subarcs.

Consider now the intervals (i) - (viii) along the optimal solution as in Fig. 12(b). In the interval
(i) we use maximum acceleration u = +1 from the starting point A and thus the velocity is
maximized point-wise in the interval (i). In (ii) the vehicle decelerates with u = −1 towards the
critical velocity at P4. A trajectory passing from a point of higher velocity in (ii) would violate
the constraint (43) at P4. After P4 we have maximum acceleration and thus point-wise maximum
velocity in (iii). The velocity in (iv) is equal to the maximum allowable from (43). In (v) we have
maximum acceleration and thus maximum velocity as in (iii). Point-wise maximality of the velocity
in (vi) and (vii) is shown in accordance to (ii) and (iii) respectively. Considering the problem from
B to A, the trajectory in (viii) corresponds to maximum acceleration from the fixed condition at
B and thus it maximizes the velocity point-wise.

We conclude that the velocity is maximized point-wise throughout the trajectory from A to B,
and thus the trajectory computed using (52) is the solution to the minimum time problem.

3.2.12 Application to an F1 circuit

In this section we validate the proposed methodology by applying it to an actual road track.
Specifically, we use the previous methodology in order to generate the optimal velocity profile over
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Figure 12: Optimal velocity profile for the general case path of Fig. 11.

a F1 circuit, given the acceleration limits of a typical F1 race car. The results are compared to the
velocity profiles and lap times achieved by expert F1 race drivers.

Figure 13(a), taken from [17], shows the cartesian coordinates of the Silverstone F1 circuit.
The data of Fig. 13(a) were used to generate the curvature profile of this trajectory, which is
shown in Fig. 13(b). By matching the performance characteristics of the vehicles in [2], [17] we can
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Figure 13: A trajectory followed by an F1 race car in the Silverstone F1 circuit [17] and its curvature
profile.

approximate the acceleration limits of a typical F1 race car as follows

fmax
t /m =

{
+16 − 0.0021v2 m/sec2 for u = +1,
−18 − 0.0021v2 m/sec2 for u = −1,

and

fmax
n /m = 30 m/sec2.
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The optimal velocity profile along the trajectory of Fig. 13 is calculated using the methodology
of Section 3.2.10. The results are shown in Fig. 14(b). Figure 14(a), taken from [17], shows the
velocity measurements for three laps of an F1 car along the Silverstone circuit. The optimally
calculated lap time using the proposed approach is 82.7 sec. The measured lap times corresponding
to the data of Fig. 14(a) are 86.063 sec, 90.891 sec and 85.805 sec respectively for each lap. Note that
the record time for the Silverstone circuit belongs to K. Raikkonen (78.233 sec, McLaren Mercedes,
2004).
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Figure 14: Velocity profiles through the Silverstone circuit: (a) achieved by human driver, (b)
computed optimal.

3.2.13 Receding Horizon Implementation

When the environment is changing the optimal profile needs to be generated on-line. One way to
achieve this is for the trajectory optimization to be implemented in a receding horizon scheme rather
than executed in one shot, from the start point to the end point. In [12] numerical optimization
along with a receding horizon scheme was used for trajectory planning of an autonomous vehicle
maneuvering through obstacles. By including the distance between the end of the horizon and the
final destination point in the total cost, it was shown that the vehicle reaches the final point. In [13]
an extension of the previous optimization scheme was proposed in order to avoid the entrapment
of the vehicle in concave obstacles. The main idea is that the cost function is estimated off-line
for the whole area where the vehicle may move. Areas that may lead to entrapment are penalized
and the estimated cost is taken into consideration in the total cost. Finally, in [14] the receding
horizon strategy of [12] was combined with a “safety algorithm”. The “safety algorithm” computes
an “escape plan” from the end of the horizon to a “safe” state (such as the vehicle coming to a
stop), for each optimization step. If such an “escape plan” is not feasible, then the last optimization
step is not executed and the “escape plan” of the previous step is executed instead.

In this work we have assumed that the geometry of the trajectory is computed separately
and it is provided to the velocity optimizer beforehand. Therefore, during a receding horizon
implementation we assume that it is the job of the path planner to provide a feasible path that
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ensures obstacle avoidance and guarantees that the vehicle will reach its final destination. This
can be achieved by following the same strategy as in [12],[13] and [14]. However, guarantees that
the velocity will not exceed the critical value at any point, and that there exists an “escape plan”
at the end of each optimization step, will have to be provided before the velocity optimizer is
implemented in a receding horizon scheme. Below we propose a dynamic scheme to adaptively
choose the planning and execution horizons to provide such guaranties.

3.2.14 Receding Horizon Scheme

Figure 15 shows a schematic that demonstrates how the receding horizon scheme works. The
Planning Horizon (PHi) is the distance from the current position up to the point which the ith

optimization step is performed. The Execution Horizon (EHi) is a fraction of PHi and it is the
distance up to the point which the planned optimization will actually be executed. When the vehicle
reaches the Replanning Horizon RHi, which is a fraction of EHi, the optimization is performed again
up to the new planning horizon PHi+1.

starting
point

RH1 EH1 PH1

RH2

RH3

EH2

EH3

PH2

PH3

(i)

(ii)

(iii)

Path distance s

Figure 15: Optimization with receding horizon.

Let the vehicle be at the starting point (s = s0 in Fig. 15). The optimization methodology
is applied up to PH1. After the optimization is completed, the vehicle may start executing the
optimal trajectory up to EH1. The shadowed area (i) in Fig. 15 shows the portion of the first
optimization that is actually executed. When the vehicle reaches RH1 the optimization is applied
again from the current position RH1 to the new planning horizon PH2. The portion of the second
optimization that will be actually executed is from EH1 to EH2 and it is shown as the shadowed area
(ii) in Fig. 15. The process will end when the final destination is within the execution horizon. The
distance between RHi and EHi is chosen such that enough time is allowed for the computation of the
optimal trajectory from RHi to PHi+1 before EHi is reached. If the computation is instantaneous
RHi and EHi can coincide. As already mentioned, the semi-analytical nature of the proposed
algorithm results in minimal computational cost and thus from now on we will assume that the
replanning and execution horizons coincide.
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3.2.15 Robustness guarantees

In this section we propose an implementation scheme for the receding horizon optimization of the
velocity profile along a given path. In particular, we propose a dynamic scheme to determine
planning and execution horizons in the z1 domain and guarantee the existence of an “escape plan”
in the end of each executed subarc.

We propose the following formula to determine the planning horizon of the ith optimization
step

PHi = max{Tvi,PHmin}, (53)

where vi is the vehicle velocity at the position of the execution horizon of the previous optimization
step EHi−1, vi = z2(EHi−1), T is a constant “reaction” time, and PHmin is the minimum planning
horizon (typically for vi = 0). This is not unlike the way a human driver chooses a planning horizon,
that is, the larger the velocity, the longer the “look ahead” distance needs to be. At the initial
point A on the path, for the first optimization step i = 1 we have

EH0 = zA
1 . (54)

The optimal solution from the current position EHi−1 to PHi is calculated using (52) and is denoted
by iz∗2(z1).

Next, we construct the characteristic from (z1 = PHi, z2 = 0) integrating backwards in time
using u = −1. This characteristic is denoted by izesc

2 (z1) and is referred to as escape trajectory of
the ith optimization step. We choose the execution horizon for the ith optimization step as follows:

EHi =
{
z1 : iz∗2(z1) = izesc

2 (z1), z1 ∈ [EHi−1,PHi]
}
. (55)

In the case when

{(z1,iz∗2(z1)), z1 ∈ [EHi−1,PHi]}
⋂

{(z1,izesc
2 (z1)), z1 ∈ [EHi−1,PHi]} = ∅ (56)

we need to increase T in (53) to determine a longer planning horizon until we can find the inter-
section point of the optimal solution and the escape trajectory (55).

At the end of each executed subarc EHi we optimize up to the new planning horizon PHi+1.
The vehicle can decelerate enough to negotiate any corner outside PHi since we have guaranteed
that the vehicle starting from EHi can come to a complete stop at PHi. In case an obstacle exists
after PHi the vehicle can follow the escape trajectory to avoid collision. The Receding Horizon
optimization scheme terminates when the end point B is within the execution horizon, namely
zB
1 ≤ EHi for some i.

The proposed implementation is summarized in the block diagram of Fig. 15. The first opti-
mization step using the above Receding Horizon scheme on the general case path of Section 3.2.11
is shown in Fig. 17. Let the planning horizon PH1 from (53) be at 30m as in Fig. 17. The execution
horizon EH1 is determined by the intersection of 1z∗2 and 1zesc

2 . Observe that the solution generated
by this implementation coincides with the infinite horizon solution of Section 3.2.11. If we randomly
choose PHx and EHx as in Fig. 17 we run the risk of reaching unacceptably high velocities. For
example, the critical velocity at P1 does not allow the vehicle to decelerate enough and negotiate
the sharp turn at P2. In this case notice that there is no intersection point between the optimal
solution and the escape trajectory (characteristic xzesc

2 ) and thus we need to increase T and choose
a longer initial planning horizon.
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Figure 16: Receding Horizon implementation block diagram.

3.2.16 Numerical Example (Receding Horizon Implementation)

In this section we apply the proposed receding horizon algorithm to the F1 car trajectory of Section
3.2.12. We have chosen T = 5 sec, which for this example is enough for the “emergency stop”
characteristic to intersect the optimal solution within the planning horizon for each iteration. The
minimum planning horizon was chosen as PHmin = 200 m.

In Fig. 18 the results of the first five steps of the receding horizon scheme are shown, along with
the planning and execution horizons of each step. The solution (solid line) is compared with the
infinite-horizon solution of the optimal velocity generator of Section 3.2.12 (dotted line). The two
solutions coincide, thus confirming the validity of the proposed receding horizon scheme.
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3.3 Extension to the Half-Car Model

Our next goal is to extend the algorithm presented above for optimal velocity profiles to a half-car
model, which includes the yaw dynamics of the vehicle. The key ingredients for such an extension
are the characterization of the acceleration envelope of the half-car model and the calculation of
maximum acceleration and deceleration on a prescribed path.

3.3.1 The Half-Car Model

The equations of motion of a half-car model along a prescribed path R(s) as in Fig. 19, are given
below

mẍ = (fFx + fRx) cosψ − (fFy + fRy) sinψ, (57)
mÿ = (fFx + fRx) sinψ + (fFy + fRy) cosψ, (58)
Izψ̈ = fFy�F − fRy�R. (59)

In the above equations m is the vehicle’s mass, Iz is the polar moment of inertia of the vehicle,
and x and y are the cartesian coordinates of the center of mass (C.M.) in the inertial frame of
reference; ψ is the yaw angle of the vehicle, and fij (i = F,R, j = x, y) denote the friction forces of
the front and rear wheels, respectively, along the longitudinal and lateral body axes. Equations (2)
will also be used, with ds/dt = v =

√
ẋ2 + ẏ2, and ft, fn the components of the resultant force, due

to front and rear wheel friction, along the tangential and normal directions of travel respectively.
The path angle φ and the vehicle slip angle β (see Fig. 19) are given by

φ = arctan (ẏ/ẋ) , β = φ− ψ, (60)

respectively.

xI

yI

C.M.
β

yB

v

φ

s

R(s)

�R

�F
fRy fRx

fFy fFx

ψ

xB

Figure 19: A half-Car Model of a vehicle driving along a prescribed path R(s).
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3.3.2 Acceleration Envelope of the Half-Car Model

The equations of motion (57)-(59) are expressed in terms of the friction forces generated by the
front and rear tires fix and fiy, i = F,R. In the following calculation of the acceleration envelope of
the half-car model we neglect power limitations from the engine/transmission. Such an assumption
is more realistic when the vehicle is operating on surfaces of low friction coefficient, such as wet
road or dirt, where the adhesion limits of the tires are considerably reduced and dominate in the
calculation of the overall acceleration capacity of the vehicle.

The tire friction forces are calculated using Pacejka’s “Magic Formula” model [18] as follows.

f tire
ij = −sij

si
Fi, i = F,R and j = x, y, (61)

where, f tire
ij (i = F,R and j = x, y) are the components of the front and rear wheel friction forces

along the longitudinal and lateral tire axes respectively, six is the longitudinal and siy is the lateral
slip of the i wheel. The components f tire

ij should not be confused with the components fij of the
same forces along the longitudinal and lateral body axes, used in equations (57)-(59). In particular,

fRj = f tire
Rj , j = x, y (62)

fFx = f tire
Fx cos δ − f tire

Fy sin δ (63)

fFy = f tire
Fx sin δ + f tire

Fy cos δ, (64)

where δ is the steering angle of the front wheel.
The total friction force of the front and rear wheel, Fi (i = F,R), is computed using

Fi = FizD sin(Catan(Bsi)), i = F,R, (65)

where Fiz (i = F,R) is the vertical load at the front and rear axle, respectively, and the total slip
si (i = F,R) is computed as

si �
√
s2ix + s2iy with i = F,R. (66)

The friction force of each wheel lies within a circle of radius equal to the maximum friction force
fmax

i (i = F,R), attained at smax
i , from (65). This is shown in Fig. 20.

We assume in the sequel that we can control the longitudinal slip six, of the front and rear wheel
independently, as well as the steering angle δ of the front wheel. Independent longitudinal slip of
front and rear wheels is a realistic assumption for modern vehicles equipped with variable ratio
torque distribution systems such as Acura’s SH-AWD and BMW’s XDrive. Similarly, independent
longitudinal front and rear wheel slip control can be achieved by expert rally drivers via advanced
driving techniques, such as “left foot braking” and “handbrake cornering” [4]. Using the standard
definition of longitudinal slip [18] we choose six ∈ [−1,+1].

The expressions for the lateral slip of the front and rear wheels can be computed from

sRy � v sinβ − ψ̇�R
v cosβ

, (67)

sFy � v sin(β − δ) + ψ̇�F cos δ
v cos(β − δ) + ψ̇�F sin δ

. (68)

The rear lateral slip sRy is determined solely by the states of the system, i.e., sRy is fixed for a
given operating condition of the vehicle (v, β, ψ̇). Thus, for a given operating condition of the
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Figure 20: Total friction force of the ith wheel with respect to the combined slip as given by the
Magic Formula.

vehicle, and assuming that we can control the rear longitudinal slip, the rear friction force fR lies
on a characteristic curve FR(sRy) as in Fig. 21. That is,

fR = (fRx, fRy) ∈ FR(sRy). (69)

The front lateral slip sFy, however, depends on the steering angle δ, which is one of the control
variables. In Fig. 22 we demonstrate that for any vehicle operating condition we may generate any
front wheel lateral slip, sFy ∈ [−smax

F ,+smax
F ] using a steering angle δ within a realistic range of

δ ∈ [−π/4,+π/4]. In Fig. 21 it is also demonstrated that the whole friction circle including its
interior can be constructed by characteristics of sFy in the interval [−smax

F ,+smax
F ]. Thus, given

any operating condition of the vehicle, and assuming that we can control independently the front
longitudinal slip and steering angle, the front friction force fF may be chosen anywhere inside the
front wheel friction circle FF

fF = (fFx, fFy) ∈ FF = {fF : |fF | ≤ fmax
F }. (70)

In Fig. 21 we demonstrate the case of a neutrally balanced vehicle (the C.M. in the middle of the
wheelbase) with same tires in front and rear wheels. In a neutrally balanced vehicle FFz = FRz

in (65) and fmax
F = fmax

R assuming same tires in front and rear wheels. Thus, for such a vehicle
configuration, we conclude

FR(sRy) ⊂ FF and FF =
⋃
sRy

FR(sRy), sRy ∈ [−smax
R , smax

R ]. (71)

At this point we assign fR and fF from (69) and (70) respectively to be the control variables of
our system.

The resultant force envelope FGG(sRy) at the C.M. of the vehicle, referred to as GG-diagram
in the vehicle dynamics literature [19], is constructed for each operating condition of the vehicle v,
β, ψ̇ (or equivalently sRy), by adding all available front and rear tire friction forces, as in Fig. 23.
This operation is nothing more than the Minkowski sum [20] of the the front friction circle FF and
the rear wheel friction characteristic curve FR(sRy), namely,

FGG(sRy) = FF ⊕FR(sRy) � {fGG = fF + fR, fF ∈ FF , fR ∈ FR(sRy)} , (72)
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where fGG = (fGGx, fGGy) is the resultant force at the C.M. and its components along the longi-
tudinal and lateral vehicle body axes, fGGx and fGGy respectively.

The optimal control strategy of Section 3.2.10 dictates that for minimum time travel the vehicle
should use the maximum available acceleration or deceleration. This corresponds to u = ±1 in the
case of the point mass model of Section 3.2.10. The maximum available acceleration for the half
car model is given by the boundary of FGG(sRy) denoted by ∂FGG(sRy). Notice that for any
f∗GG(sRy) ∈ ∂FGG(sRy) there exists a unique vector [f∗F (sRy), f∗R(sRy)], where f∗F (sRy) ∈ FF and
f∗R(sRy) ∈ FR(sRy), such that f∗GG(sRy) = f∗F (sRy) + f∗R(sRy). In other words, one can define the
following one-to-one mapping

M : FF ×FR(sRy) �→ ∂FGG(sRy)
f∗GG(sRy) = M(f∗F (sRy), f∗R(sRy)) (73)

and its inverse

(f∗F (sRy), f∗R(sRy)) = M−1(f∗GG(sRy)). (74)

An extension of the optimal control strategy described in Section 3.2.10 becomes now evident.
Given an operating condition of the vehicle (velocity components ẋ and ẏ, orientation ψ and yaw
rate ψ̇) and the geometry of the path κ(s), we can calculate the necessary centripetal force fn

from (2) such that the vehicle follows the path. We can also determine the tangential and normal
directions to the path with respect to the orientation of the vehicle (these are denoted by et and en
respectively in Fig. 23). The calculated fn lies along the normal direction en and may be produced
by only two possible total forces f∗+GG and f∗−GG on ∂FGG (Fig. 23). The force f∗+GG produces an
accelerating tangential force ft, which corresponds to the u = +1 strategy of Section 3.2.10, and
f∗−GG produces a braking force that corresponds to the u = −1 strategy. Using the map M−1 of (74)
with either f∗+GG or f∗−GG we can determine the required friction forces at the front and rear wheels
fF = (fFx, fFy) = f∗F , fR = (fRx, fRy) = f∗R respectively (Fig. 24). We can use these expressions
to integrate equations (57)-(59).
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vehicle.

3.3.3 Direct Implementation of the Point Mass Strategy

In the previous section we calculated the acceleration capacity of a half-car model and derived the
maximum available acceleration/deceleration when the vehicle tracks a prescribed path. Next, we
demonstrate a direct implementation of the optimal control strategy of Section 3.2.10 to a path with
a point of minimum magnitude of radius using the equations of motion (57)-(59) and acceleration
capacity (72) of the half-car model. The solution along sub-arcs of the overall path containing a
single point of minimum radius is the main “building block” in the construction of the optimal
solution along the total path using the methodology of Section 3.2.10. The second “building block”
is the solution along paths of constant radius. An extension of the optimal control strategy along
a constant radius path to a half-car model is straightforward (steady-state cornering of constant
velocity [19, 21] using maximum centripetal acceleration) and will be omitted.

Consider the path of Fig. 25(a) with radius profile as shown in Fig. 25(b). Notice that at
point P1(xP1 , yP1) of the path the radius profile takes its minimum value R(s) = RP1 at s = sP1 .
According to the methodology of Section 3.2.10 the velocity of the vehicle is equal to vcrit at sP1

such that the generated centripetal force matches the total acceleration capacity of the vehicle.
The vehicle decelerates with maximum available deceleration (u = −1) before the point P1 and
accelerates with maximum available acceleration (u = +1) after the point P1.

Our first task is to determine the critical velocity vcrit(sP1) of the half-car model at P1 such
that the total acceleration capacity is used towards the generation of the centripetal force. As
demonstrated in Section 3.3.2 the acceleration capacity of the half-car model depends on its state
of operation v, β and ψ̇. We conclude that vcrit(sP1) is different for all possible values of β and ψ̇
at sP1 . For consistency we enforce the following attitude and attitude rate restrictions

β(sP1) = 0, ψ̇(sP1) = v(sP1)/RP1 . (75)

The conditions (75) above imply that the vehicle satisfies the steady-state cornering requirements
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Figure 23: GG-diagram for a given operating condition of the vehicle.

[19, 21], instantaneously at the point of minimum radius P1.
Conditions (75) imply that the lateral slip of the rear wheel at P1, from (67), is

sRy(sP1) = −�R/RP1 . (76)

The rear tire force along the normal direction n coincides with fRy at sP1 , and is maximized when
fRx(sP1) = 0. Recall that we may use any front tire force within the friction circle of radius
fmax

F . In order to maximize the contribution of the front tire to the centripetal force we choose
|fFy(sP1)| = fmax

F and fFx(sP1) = 0.
Thus, the velocity of the half-car model at point P1 is given by

vcrit(sP1) =

√
|RP1 |(fmax

F + |fRy(sP1)|)
m

. (77)

The trajectory of the vehicle in Fig. 26 is constructed according to the optimal control strategy
of Section 3.2.10.

The acceleration phase is constructed by integration forward in time of the equations of motion
(57) - (59) starting from point P1 with initial conditions (75), (77) using f∗+GG from Section 3.3.2.

The braking phase is constructed by integration backwards in time of the equations of motion
(57) - (59) starting from point P1 with initial conditions (75), (77) using f∗−GG from Section 3.3.2.

The resulting velocity profile is shown in Fig. 27(a) and the vehicle slip angle β is shown in
Fig. 27(b). The longitudinal, lateral and total friction forces, fix, fiy and fi, i = F,R, of the front
and rear tires are shown in figures 28(a) and 28(b) respectively.

In both accelerating and braking phases, we notice an increase in the magnitude of the vehicle
slip angle β and in particular, an oversteering tendency of the vehicle. Oversteer occurs when the
rear wheels reach the adhesion limit and cannot generate any additional cornering force, while the
tires of the front axle either operate away from the adhesion limit [19]. In case both front and
rear tires have reached their adhesion limit, oversteer occurs when the yawing moment due to the
front tire friction is greater than the one due to the rear tire friction. Oversteer appears as a

36



−3000 −2000 −1000 0 1000 2000 3000

−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

3500

f
x
 (N)

f y (
N

)

e
n
 

e
t
 

xB 

f
n
 

f
t
 (braking)

f
GG
*−

∂ F
GG

∂ F
F

F
R

f
R
 

f
F
 

yB 

β 

Figure 24: Using M−1 we can calculate the front and rear axle forces fF and fR when the vehicle
operates at the limit of its acceleration capacity: Maximum deceleration case f∗−GG.

“nose-in” spin of the vehicle (Fig. 26), i.e. when the vehicle slip angle develops in a direction such
as βsign(R) < 0.

For the numerical example of Section 3.3.3 we consider equal distribution of the weight in front
and rear axles (�F = �R) and same tires in front and rear axles. For such a vehicle configuration
(71) holds and we conclude that

max(|fRy(sRy)|) ≤ max(|fFy(sRy)|), (78)

for any vehicle operating condition v, β, ψ̇. The later explains the oversteering tendency of the
vehicle in Fig. 26.

In Section 3.2.10 the optimal trajectory along the total path is constructed by concatenation
of the optimal trajectories along specific sub-arcs, namely, sub-arcs containing a point of minimum
radius and sub-arcs of constant radius. Continuity of the states in the point mass model case of
Section 3.2.10 is achieved by switching between trajectories at the intersection points of the z2(z1)
profiles of each sub-arc.

In the half-car model case the state vector is extended to include the yaw dynamics of the
vehicle (β, ψ̇). In constructing a trajectory over the total path by concatenation of trajectories
over sub-arcs of the total path, we have to ensure continuity of all states (v, β, ψ̇) at the switching
points from one sub-arc trajectory to the other. A necessary condition for the continuity of the
yaw states at the switching points between trajectories is that the yaw states remain bounded. In
the following we present a stable implementation of the methodology of Section 3.2.10 with respect
to the yaw dynamics.
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Figure 25: (a) A corner with a point of minimum radius. (b) Radius profile of the corner.
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Figure 26: Direct implementation of the optimal control strategy to the half-car model: trajectory.
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Figure 27: Direct implementation of the optimal control strategy to the half-car model: (a) velocity
profile (b) vehicle slip angle.
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Figure 28: Direct implementation of the optimal control strategy to the half-car model: front and
rear tire forces.
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3.3.4 Stable Implementation of the Point Mass Methodology

Vehicle yaw stability characteristics vary with the different possible configurations of the vehicle:
weight distribution, front-rear-all wheel drive, etc [19]. In this work we demonstrate the importance
of yaw stability in relation to the problem of generating near-minimum-time velocity profiles along
prescribed paths, rather than address the problem of vehicle stability for all possible configurations.
For demonstration purposes we will consider the neutrally balanced vehicle of Section 3.3.3 with
same tire characteristics and an inherent oversteering behavior as described therein.

In this section we design a control scheme in which the optimal f∗±GG strategy is interrupted
momentarily by a control law aiming to reduce the magnitude of the vehicle slip angle. We define
the objective of the stabilizing control law as follows: (i) guarantee that the vehicle remains on the
prescribed path, and (ii) generate yaw moment to oppose oversteer.

3.3.5 Stabilizing Control

Consider the following control strategy. Let both forces on the front and rear axles be parallel to
the normal direction to the path, i.e.

〈fi, et〉 = 0, i = F,R (79)

where 〈., .〉 denotes the vector inner product and et is the unit vector along the tangential to the
path direction.

In order for the vehicle to remain on the prescribed path R(s) we require that the total force,
which lies on the normal direction to be equal to the centripetal force

fF + fR = fn =
mv2

R(s)
(80)

where v is the current speed of the vehicle. It is obvious that the forces generated by the front and
rear tires contribute only to the centripetal acceleration of the vehicle and thus the speed remains
constant.

v̇ = 0. (81)

The operation of the control strategy (79), (80) is demonstrated in Fig. 29. For a given operating
condition of the vehicle (v, β, ψ̇) the rear tire force fRy(sRy) lies on the characteristic curve FR(sRy).
Given the condition (79) the rear tire friction force is determined uniquely as in Fig. 29. In the
same figure we notice that the front tire force is also uniquely determined in order for the condition
(80) to be satisfied.

Next, we derive the switching function that determines the instances when the (79), (80) control
must be activated. Recall equation (60) which associates the vehicle slip angle β, the vehicle yaw
angle ψ and the path angle φ. Differentiating (60) twice we get

β̇ = φ̇− ψ̇ = φ′v − ψ̇ =
v

R
− ψ̇ (82)

β̈ = −R′

R2
v2 +

1
R
v̇ − 1

Iz
Mz (83)

where Mz is the yaw moment given by

Izψ̈ = Mz = �F fFy − �RfRy (84)
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Figure 29: The front and rear wheel friction forces are uniquely determined in the yaw stabilization
mode.

Consider the case where the control strategy (79), (80) is applied and condition (81) holds. Also
let the control (79), (80) be activated when

sRy = smax
R . (85)

Equation (85) is a necessary condition for oversteer, as it implies that the rear wheel has reached
its adhesion limit. At this point we will have

fRy = sign(R)fmax
R (86)

fFy =
mv2

R
− sign(R)fmax

R , (87)

and equation (83) can be written

sign(R)β̈ = −sign(R)R′

R2
v2 − 1

Iz

(
�Fmv

2

|R| − (�F + �R)fmax
R

)
. (88)

The yaw acceleration is opposing oversteer when

sign(R)β̈ > 0. (89)

Substituting (88) in (89) we get

v <

√
R2(�F + �R)fmax

R

Izsign(R)R′ + �f |R|m � vs (90)

In summary, we have that switching from f∗±GG to (79), (80) when

sRy ≤ smax
R or v ≥ vs (91)

results in a yawing acceleration that reduces oversteer.
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3.3.6 Numerical Example 1: Single Corner

Consider the reference path of Fig. 25. The trajectory of the vehicle in Fig. 30 is constructed as
follows:

The acceleration phase is constructed by integration forward in time of the equations of motion
(57) - (59) starting from point P1 with initial conditions (75), (77). The control switches from f∗+GG

to (79), (80) whenever the condition (91) holds.
The deceleration phase is constructed by integration backwards in time of the equations of

motion (57) - (59) starting from point P1 with initial conditions (75), (77). The control switches
from f∗−GG to (79), (80) whenever the condition (91) holds.

The resulting velocity profile is shown in Fig. 31(a) and the vehicle slip angle β is shown in
Fig. 31(b). The longitudinal, lateral and total friction forces, fix, fiy and fi, i = F,R, of the front
and rear tires are shown in figures 32(a) and (b) respectively.

We notice that we achieve a velocity profile comparable to the one using the direct implemen-
tation of Section 3.3.3. At the same time the vehicle slip angle remains bounded and oversteer is
considerably reduced. Observing the intervals where the velocity remains constant (Fig. 31(a)) we
can identify the switchings from f∗±GG to the stabilizing control strategy.
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Figure 30: Stable implementation of the optimal control strategy to the half-car model: trajectory.
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Figure 31: Stable implementation of the optimal control strategy to the half-car model: (a) velocity
profile (b) vehicle slip angle.
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Figure 32: Stable implementation of the optimal control strategy to the half-car model: front and
rear tire forces.
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3.3.7 Numerical Example 2: Consecutive Corners

In this section we construct the trajectory along a path consisting of consecutive corners according
to the methodology of Section 3.2.10, using the stable implementation of Section 3.3.4.

Consider the path of Fig. 33(a). In Fig. 33(b) we can see the corresponding curvature profile.
Consider fixed initial and final velocities v0 = vf = 10m/sec at points A and B of the path
respectively.
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Figure 33: (a) A path with two consecutive corners (b) Curvature profile of the path.

According to the methodology of Section 3.2.10 we construct the following trajectories:
Starting from point A with initial yaw states satisfying (75) and velocity v0 we integrate forward

in time the equations of motion (57) - (59). The control switches from f∗+GG to (79), (80) whenever
the condition (91) holds (stable implementation). The resulting velocity profile V +

A (s) is shown in
Fig. 34 and the vehicle slip angle β+

A (s) in Fig. 35.
Starting from point B with initial yaw states satisfying (75) and velocity vf we integrate back-

wards in time the equations of motion (57) - (59). The control switches from f∗−GG to (79), (80)
whenever the condition (91) holds (stable implementation). The resulting velocity profile V −

B (s) is
shown in Fig. 34 and the vehicle slip angle β−B (s) in Fig. 35.

Starting from point P1 with initial conditions (75), (77) we integrate forward in time the equa-
tions of motion (57) - (59). The control switches from f∗+GG to (79), (80) whenever the condition
(91) holds. The corresponding velocity profile is V +

P1
(s) and the vehicle slip angle is β+

P1
in figures

34 and 35 respectively.
Starting from point P1 with initial conditions (75), (77) we integrate backwards in time the

equations of motion (57) - (59). The control switches from f∗−GG to (79), (80) whenever the condition
(91) holds. The corresponding velocity profile is V −

P1
(s) and the vehicle slip angle is β−P1

in figures
34 and 35 respectively.

Finally we construct the velocity and vehicle slip angle profiles for P2 V
±
P2

and β±P2
in figures 34

and 35 respectively, similar to the characteristics corresponding to point P1.
In the point mass case (Section 3.2.10) the switching from one trajectory to the other is de-

termined by the intersection points of the corresponding velocity profiles. In the half-car model,
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Figure 34: Stable implementation to consecutive corners: velocity profile.

where the state vector is extended by the yaw dynamics states, however the intersection points of
the velocity profiles do not necessarily coincide with the intersection points of the vehicle slip angle.
For instance V +

A (s) and V −
P1

(s) in Fig. 34 intersect at s = 5.95m (point SPA1), while β+
A (s) and

β−P1
(s) intersect at s = 6.3m.
On the other hand, using the stable implementation of Section 3.3.4 to construct the trajectories

along each sub-arc results in trajectories with bounded values of the yaw states. In other words
the vehicle slip angle profiles are considerably close in the area of intersection of the corresponding
velocity profiles. The switching points for the overall trajectory are chosen by trial and error, in
the area of intersection of the velocity profiles aiming to generate a velocity profile

Vo(s) � min
s

{V +
A (s), V −

P1
(s), V +

P1
(s), V −

P2
(s), V +

P2
(s), V −

B (s)}. (92)

The velocity profile Vo(s) along the whole path is shown in Fig. 34 and the corresponding vehicle
slip angle βo(s) is shown in Fig. 35. The trajectory of the vehicle along the path is shown in Fig. 36.

The first switching from acceleration f∗+GG to deceleration f∗−GG is adjusted from SPA1 to the
point ASPA1. Switching control exactly at SPA1 results in a solution Ve(s) that diverges from (92).
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3.3.8 “Zero-Slip” Implementation

In this section we present a different extension of the methodology of Section 3.2.10 to the half-car
model. This time we impose the additional constraint that the vehicle tracks the path with zero
slip angle in order to completely eliminate the need for yaw stability considerations.

For exact tracking of the curvature profile κ(s) with vehicle slip angle β = 0 the centripetal
force on the vehicle is given by

fn = κmv2 = fFy + fRy. (93)

For β = 0 we have that the path angle φ coincides with the yaw angle ψ of the vehicle. That is for
β = 0

ψ(s) = φ(s), ψ′(s) = φ′(s) = κ(s), ψ′′(s) = φ′′(s) = κ′(s). (94)

Notice that

ψ̈ = ψ′′v2 + ψ′v′v. (95)

The yaw dynamics (59) can then be written as

Izψ
′′v2 + Izψ

′v′v = �F fFy − �RfRy, (96)

or using (93)

Izψ
′′v2 + Izψ

′v′v = �Fκmv
2 − (�F + �R)fRy. (97)

Consider now the longitudinal dynamics

mv̇ = ft ⇒ mvv′ = ft. (98)

Equation (97) can now be written as

Izκ
′v2 + Izκ

ft

m
= �Fκmv

2 − (�F + �R)fRy ⇒

ft =
m(�Fκmv2 − Izκ

′v2)
Izκ

− m(�F + �R)
Izκ

fRy. (99)

Equation (99) above provides the necessary tangential force ft for the vehicle to track κ(s) with
β = 0, given the rear lateral force fRy. The linear map ft(fRy) of (99) is shown in Fig. 37.

The rear tire lateral slip with β = 0 is given by

sRy = − ψ̇�R
v

= −ψ
′v�R
v

= −κ�R, (100)

and the rear lateral force changes with sRx ∈ [−1,+1] as in Fig. 21. Accordingly we can find the
range of ft using (99).

For a given operating condition of the vehicle v, ψ̇, (β = 0), i.e. for a given value of sRy, each
value of sRx ∈ [−1,+1] corresponds to unique values of fRx and fRy from (61) and a unique value
of ft from (99). The front tire longitudinal force fFx is given by

fFx(fRx, fRy) = ft(fRy) − fRx. (101)
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Figure 37: Forces diagram for tracking with β = 0.

The front longitudinal forces fFx(fRx, fRy) from (101), for sRx ∈ [−1,+1] are shown in Fig. 37.
Finally, in order for the front tire friction force to remain in the front tire friction circle we have

to ensure that

|fFx| ≤
√

(fmax
F )2 − f2

Fy =
√

(fmax
F )2 − (fRy − κmv2)2 � fmax

Fx . (102)

The bounds ±fmax
Fx from (102) are shown in Fig. 37.

An extension of the methodology of Section 3.2.10 to a half-car model tracking a prescribed
path κ(s) with vehicle slip angle β = 0 becomes evident.

The maximum available accelerating front longitudinal force fFx is given by the intersection of
fFx from (101) with fmax

Fx from (102). This defines f∗+Ry as in Fig. 37 which provides the maximum
available accelerating force of the vehicle f∗+t . The control f∗+t corresponds to the maximum
acceleration u = +1 for the point mass model of Section 3.2.10. If there is no intersection of fFx

from (101) with fmax
Fx from (102) the maximum available acceleration f∗+t is given for sRx = −1 as

in Fig. 38(a).
Equivalently, the maximum available decelerating front longitudinal force fFx is given by the

intersection of fFx from (101) with −fmax
Fx from (102). This defines f∗−Ry and f∗−t . The control f∗−t

corresponds to the maximum deceleration u = −1 for the point mass model of Section 3.2.10. If
there is no intersection of fFx from (101) with −fmax

Fx from (102) the maximum available deceleration
f∗−t is given for sRx = 0 as in Fig. 38(b).

As velocity decreases, ft for sRx = ±1 becomes negative, which implies a negative maximum
accelerating force f∗+t < 0 as in Fig. 39(a). Equivalently, as velocity increases, ft for sRx = 0
becomes negative, which implies a positive maximum decelerating force f∗−t > 0 as in Fig. 39(b).
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Figure 38: (a) f∗+t for sRy = −1. (b) f∗−t for sRy = 0.

In order to avoid such problematic cases we switch from f∗±t to the following control

ft = 0, when f∗−t > 0 or f∗+t < 0. (103)
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Figure 39: (a) Negative maximum acceleration f∗+t (b) Positive maximum deceleration f∗−t .

3.3.9 Numerical Example: Zero-Slip Implementation

Consider the path of Fig. 33. This time we calculate the trajectory of the vehicle using the zero-slip
strategy of Section 3.3.8.

First we need to derive the optimal states at the points of minimum magnitude of radius P1

and P2. As for the whole trajectory we take β(sP1) = β(sP2) = 0. From equations (94) we get

ψ̇(sPi) = ψ′(sPi)v(sPi) = κ(sPi)v(sPi), i = 1, 2. (104)

To maximize the centripetal force at P1 and P2 we enforce sRx(sPi) = 0, i = 1, 2 to maximize
fRy which lies along the normal direction n. The rear lateral force is calculated from (61), given
sRy = −κ�r. The initial velocity v(sPi), i = 1, 2 is calculated then from (99) setting ft = 0.
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The optimization scheme of Section 3.3.7 is repeated here using f∗+t for maximum acceleration
and f∗−t for maximum deceleration. The resulting velocity profile (Fig. 40) reveals that the “zero-
slip” implementation of Section 3.3.8 is conservative compared to the “stable” implementation of
Section 3.3.7. Stability and continuity of the yaw states is however a-priori guaranteed in the
“zero-slip” strategy. Figure 41 shows the calculated trajectory.
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Figure 40: Zero-slip implementation to consecutive corners: velocity profile.

3.4 Conclusions and Future Work

In this work we presented semi-analytic methodologies to generate optimal and near-optimal min-
imum time velocity profiles for ground vehicles along a prescribed path.

First, we presented the point mass model case and a constructive proof of optimality of the
minimum time solution. The methodology accounts for the loss of controllability due to the coupling
of accelerating/braking with centripetal forces. In addition, the necessary optimality conditions
were derived, which provide an estimate of the number and type of control switchings according
to the geometry of the prescribed path. A receding horizon scheme has also been proposed to
lower the computational cost of implementing the proposed analytic approach, and to account for
unpredictable changes in the environment. Numerical simulations show that the proposed on-line
velocity optimizer is competitive when compared to lap times obtained by expert F1 race drivers.

Next, we presented several extensions of the point mass case methodology to a vehicle model
that includes the yaw dynamics. We introduced a half-car model and calculated the acceleration
enveloped from the tire friction forces on the front and rear axles. Direct implementation of the
point mass control strategy to the half-car model case revealed the need to design control schemes
taking yaw stability into consideration. We followed two different approaches towards a stable with
respect to yaw dynamics implementation. In the first approach we designed a control scheme that
intervene during execution of the optimal maximum acceleration/maximum deceleration action
when the vehicle oversteers and the yaw dynamics tend to instability. In the second approach we
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Figure 41: Zero-slip implementation to consecutive corners: trajectory.

redefined the maximum acceleration limits of the vehicle subject to the additional constraint of
zero vehicle slip angle throughout the path.

The zero-slip implementation of the point-mass methodology to the half-car completely elim-
inates the problems associated with yaw stability. Preliminary results presented above, however,
show that the zero-slip implementation generates conservative results. To this end we will continue
towards developing a stable implementation scheme according to Section 3.3.4 that will compensate
for both oversteer and understeer of the vehicle.

Ultimately we plan to develop a hybrid numerical/semi-analytic optimization scheme to cal-
culate optimal trajectories for ground vehicles. The semi-analytic methodologies presented in this
work can be used to provide the necessary initial guesses to numerical optimization schemes, which
allow for further increase in the fidelity of the vehicle models used and generate realistic results.
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